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I.LABSTRACT

Type 2 Diabetes (T2D) is characterized by a combination of defects in insulin action and impairment in insulin secretion.
Deficient insulin action causes people with Type 2 Diabetes to have difficulty controlling their blood glucose concentration
(BGC) and experience periods of high (hyperglycemia) and low (hypoglycemia) BGC. Continuous glucose monitoring (CGM)
sensors and machine learning algorithms can automate the process of meal size estimation, improve the accuracy of the
carbohydrate estimations, and reduce the involvement of the subject. The aim of this project was to use dynamic Partial Least
Squares (PLS) regression to model blood glucose data from CGM devices and optimize the model parameters for best
generalized performance across all subjects. The mean square error for the modelled data was obtained to determine the
accuracy of the predictive modelling. The parameters were optimized by explicit enumeration and grid search approach to
minimize the mean square error (MSE), and the lowest MSE was obtained with the number of latent variables as 5 and past
horizon as 5 (25 minutes). Future research will develop the logic inference using the first- and second-order derivatives of the
prediction curve that will sound the alarms based on the predictions made in the current work.

ILINTRODUCTION

2.1 Diabetes and blood diseases, kidney failures, nerve damage in

Type 2 diabetes (T2D) is a heterogeneous disease with a limbs and so on [9].

significant degree of interpersonal variability that affects an
estimated 34 million Americans [4]. T2D is characterized by
an increase in resistance to insulin, a decrease in insulin
production and secretion, or some combination of these
factors. This causes individuals with T2D to have difficulty
controlling their blood glucose concentration (BGC) and
experience periods of high (hyperglycemia) and low
(hypoglycemia) BGC[4]. Ingesting food leads to an increase in L Blood
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however, this paper will focus on the levels of insulin as the
main factor. In T2D, as the body produces less insulin, less
glucose is absorbed from the bloodstream leading to an overall
increase in glucose levels which is termed as hyperglycemia
[8]. Hyperglycemia can also occur when the body starts to
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2.2 CGM Sensors (what are they?)

Blood Glucose monitoring has been revolutionized by

resist the insulin produced which leads to high glucose levels.
T2D is a chronic condition with no cure which demonstrates
the responsibility of the patient to manage their own blood
glucose levels. This can be done using continuous glucose
monitoring sensors (CGM). Prolonged hyperglycemia can lead
to chronic and severe health conditions over time such as heart
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the development of Continuous Glucose Monitoring
(CGM) sensors [2]. These are wearable minimally-
invasive devices that measure glucose concentration
almost continuously (1-5 min sampling period) for
several consecutive days/weeks. The first wearable
CGM sensor prototype was introduced in 1999 and,
since then, devices have evolved rapidly [2]. CGM
readings may be sent to a phone with a sampling time



of 5 minutes and accessed through phone applications. While
more popular for individuals with T1D, CGM sensors provide
valuable, real-time insight into T2D blood glucose dynamics.
CGM sensors have greatly improved and are now able to
incorporate filtering to provide a more accurate measurement
[10]. These devices now incorporate several features such as
the ability to make decisions regarding the amount of food
eaten to balance hypoglycemia or the physical exercise done
to balance hyperglycemia. CGM sensors can monitor the blood
glucose data in the real time and general alerts for
hypo/hyperglycemia, however they do not have the ability to
make or analyze the future predictions for BGC.

2.3 Predictive Modeling in Diabetes (several citations)

Early hyperglycemia warning systems based on continuous
glucose monitoring (CGM) sensors may provide a convenient
solution for monitoring and reducing the severity of
hyperglycemia episodes. Hyperglycemia prediction is an
estimation of when a person's blood glucose concentration
(BGC) will rise above a certain threshold soon. Typically, the
threshold for hyperglycemia is considered 180 mg/dL and this
value was initially used in this study. However, many people
with Type 2 diabetes (T2D) may have a higher fasting BGC
which would cause small amounts of carbohydrate
consumption to push the person into hyperglycemia.
Continuous glucose monitoring sensors and machine learning
algorithms can automate the process of meal size estimation,
improve the accuracy of the carbohydrate estimations, and
reduce the involvement of the patient.

In figure 2, real time glucose data obtained from CGM sensors
was graphed along with the threshold limit of hyperglycemia.
The patients experience varied highs and lows during the 1500
minute sampling time. This depicts the need of predictive
modelling in diabetes. Predictive modelling will be able to
make accurate predictions about someone’s glucose level
which can then be utilized by the patient to control their
glucose levels more effectively before they ever reach the
threshold.

System identification refers to the process of finding a
mathematical model that describes a set of input-output data
[7]. In this paper, the input data are past and current BGC
measurements and the output data are the future BGC
measurements. Identifying a model from this data therefore
produces a predictive model that can be used to forecast future
blood glucose values. The mathematical model of PLS
Regression was utilized for this purpose [6]. Other
mathematical models such as autoregressive-moving-average
(ARMA) or Logistic Multiple Regression can also be used
however, PLS was found to be the most effective and hence
chosen as the predictive model.
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Figure 2: Real time data from 3 patients and the
threshold limit of hyperglycemia at 180 mg/dL

INI.METHODS

3.1 Data Used

The data set for this project was the real-time data
obtained from 135 patients. It was cleaned and filtered
to reduce noise and rectify missing measurements. The
data was then modelled using PLS Regression
technique. The MATLAB Statistics and Machine
Learning toolbox software was used for this research
project.

3.2 PLS Regression
3.2.1 What is PLS?

Partial least squares (PLS) regression allows for the
coefficients for all outputs to be estimated
simultaneously by projecting the input regressor data,
X, and the output response or predictions, Y, onto
orthogonal subspaces of A-pairs of latent variables[1].
Each pair of latent variables accounts for a certain
percentage of the variance in the input regressor data
and output response matrices. Mathematically, PLS
regression consists of decomposing X and Y as the sum
of the outer products of a score and loading vector as
follows:

A
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where ¢, and q, are the input and output scores
representing the projections of the variables in ¥ and Y
on their subspaces, ¢, and , define the orientation of
the corresponding subspaces, the matrices,T, P, U, and
Q contain their corresponding vectors, and E and F
denotes residual matrices for the input regressor and



output response data matrices. The noise reduction property of
PLS regression stems from the idea that the fewer latent
variables are typically a consequence of measurement noise
and system irregularities and therefore can be discarded during
the PLS regression algorithm.

Since the PLS algorithm is used to obtain a mathematical
relationship between the original data matrices, the input
regressor and output response matrices are related through an
inner relation between the corresponding scores as follows:

Uy = bty +e4,for a € [1,4]

where p are the coefficients and e, are the residuals of the
inner relationship between the scores of X and Y [5]. In this
work, the PLS regression parameters are computed using the
nonlinear iterative partial least squares (NIPALS) algorithm
where the subspace orientation and scores for both the
regressor input and output response matrices are determined
simultaneously to maximize the covariance between X and Y
and obtain the optimal fit for the inner relationship.

In this work, dynamic PLS is used to model the time-varying
correlations and lags between the past CGM data and the future
CGM data to be predicted. Dynamic PLS is a powerful
multivariate algorithm that builds efficient models for
predicting the future values by maximizing the covariance
between the past and future data.

PLS relates regressor and regressed variables by maximizing
the covariances between them [3]. PLS builds linear relations
between input data and output data and uses these relations to
predict future values. PLS has latent variables that describe the
important underlying features of the data.

3.2.2 Glucose Modelling Methodology

A hyperglycemia prediction algorithm based on PLS
regression and qualitative trend analysis has been developed.
A matrix of past CGM data is used to handle the CGM time
series, and the data are split into training and testing data. The
training set is used to identify the model parameters and
algorithm hyperparameters before evaluating the prediction
algorithm on the independent testing set. Usually, 80% of the
dataset is designated for training and 20% is designated for
testing so this allocation was used. The training set was
normalized by calculating the Zscores for the data and then
fitting the PLS model to it. Once the model was fit, mean
square error was calculated to determine the prediction
accuracy. Next, the testing data set was used with the now fit
PLS model and the mean square error was calculated. The
three important variables used in this project were that of past
horizon, latent variables and future horizons. Latent variables
are crucial to the PLS model and help find better relations to
perform a better regression. Past horizons are the set of
previous data points that are needed by the program to
determine accurate predictions values. Future horizon is
defined as how far ahead into the future are the predictions
being made. A sample time of 5 minutes was set so the past
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horizon of 1 implied 5 minutes in real time. The
program was developed to run with a range of past
horizon and latent variables values so these two
important parameters could be optimized. The PLS
model was then run for 135 patients using the
optimized parameters and for different future horizons
and the results were tabulated.

IV.RESULTS

The following results were obtained when the PLS
model was fit to the training and the testing data. The
mean square error obtained for the training set and the
testing set is in the table below. As it can be seen, the
model (red) in the graph fits the actual glucose data
really well. It shows that PLS is a great mathematical
model to use for this type of predictive modelling. The
testing data also worked really well with a very low
mean square error for 15 minute ahead predictions.
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Figure 4: The top graph shows the training data in blue
with its predictions in red. The bottom graph shows the
testing data in blue with its predictions in red.

Table 1: The parameters for figure 3 and figure 4

Figure Past Latent Future Mean

Horizon Variable Horizon | square
error

3 25 mins 5 15 4.5698

(Training minutes

)

4 25 mins 5 15 6.9832

(Testing) minutes

The next logical step was to verify the accuracy of the
model for different future horizons. Three different
future horizons of 15 minutes, 30 minutes and 45
minutes were picked for this case and the results were
plotted for such. The figure below shows these graphs,
and it can be seen from the figure that the mathematical
model works really well for 15 minute ahead



predictions. The predictions are fairly accurate for 30 minute
ahead predictions, however the mean square error increases
when moved on to the 45 minute ahead prediction horizon.
This shows that the further into the future, the model tries to
predict, the less accurate it becomes.
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Figure 5: The graph shows optimized predictions for 15
minutes ahead into the future.
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Figure 6: The graph shows optimized predictions for 30
minutes ahead into the future.

Testing Data and Optimized Predictions

Testing Data

— — — Optimized Predictions /V\/\
AN 7\
/\\/ ! \\ / )v >
s Rize. "‘“‘2_.7—(:-’\[J ~

Apr 11, 20:00 Apr 12, 00:00 Apr 12, 04:00 Apr 12, 08:00
Time 2013

Glucose Level mg/dL
@
=

Figure 7: The graph shows optimized predictions for 45
minutes ahead into the future.

Table 2: Parameters for figure 5,6,7 and the associated mean
square errors

Future Horizon MSE obtained

5 25 mins 15 mins 9.3946
6 30 mins 18.0048
7 25 mins 45 mins 23.6090

Once the training and the testing data were modelled
accurately and the results were satisfying, the next step was to
optimize the user defined parameters of latent variable and past
horizon. It is necessary to obtain these parameters since there
is no set number available for this in the literature and it is
crucial that the number of past data points being used is the
same for each subject. Moreover, the lowest MSE obtained due
to these optimized parameters makes the PLS model fit the
data better. These parameters were optimized by explicit
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enumeration and grid search approach to minimize the
mean square error (MSE).
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Figure 8: Mean Population Prediction Error vs Past
Horizons.
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Figure 9: Mean Population Prediction Error vs Number
of PLS Latent Variables.

The number of variables used was selected based on the
number of prior data points used and the lowest error
value. From the figures above, it can be seen that latent
variables of 5 and past horizon of 5 (25 minutes ahead)
give the lowest MSE for 135 subjects. Hence, these
optimized parameters were selected and every figure in
this paper has been created using these optimized
parameters.

V.DISCUSSION

These findings suggest that the PLS model fits the real-
time data well and demonstrates the associated errors
with optimized parameters of past horizon and number
of latent variables that will be used in the future
research to develop this model further. Being able to
make accurate predictions of blood glucose
concentration enables the patient to further be able to
manage their blood glucose levels well. The major
significance of these findings can be utilized for future
research work in developing an alarm system where the



sensor can accurately predict the glucose levels and based on
that sound an alarm if the patient will cross the hyperglycemia
threshold limit in the future. By predicting accurately further
into the future, proactive early warnings will be provided to the
user on impending hyperglycemia events. Using the optimized
parameters was successful since it helped eliminate large
sources of error.

The data was obtained from 135 T2D patients, however, the
demographics were not factored in, into this study. A good idea
would be to include different types of parameters such as age,
sex and other demographic information about the pateint to
better see where the model can perhaps breakdown.

Future research will focus on developing the logic inference
that will sound the alarms based on the predictions made in the
current work. The logic inference will be developed using the
first- and the second-order derivatives of the prediction curve.
Qualitative trend analysis will also be utilized to help with the
development of this alarm system. Qualitative trend analysis
is used to extract information from time series data based on
the overall behavior of the data. A polynomial is fit to a section
of the data to provide a differentiable function. The first and
second derivatives of this function are then found and
evaluated. The sign of the derivatives after having been
evaluated at a specific point then provides information about
the data. The first derivative (dx) describes the direction and
magnitude of the change in the data (i.e. the velocity) and can
quantify whether it is increasing or decreasing in value. The
second derivative (ddx) describes the rate of change of the
velocity (i.e. the acceleration) and whether the data is heading
towards a maximum or minimum, and change is decelerating
or accelerating in either direction. Qualitative trend analysis is
useful for hyperglycemia detection because the overall trend
of blood glucose concentration is relatively well known.
Postprandial hyperglycemia follows a roughly parabolic arc
based on the carbohydrate content of the meal and physical
characteristics of the person. The trends outlined by qualitative
trend analysis can then be used to provide insight above the
future trajectory of the BGC in real time. Using this, CGM
sensors and machine learning algorithms will be able to
automate the process of meal size estimation, improve the
accuracy of the carbohydrate estimations, and help regulate
hyperglycemia in people with T2D.

VI.CONCLUSION

Patients dealing with T2D regularly measure their blood
glucose concentrations to live a healthy life. They do so by
using the Continuous glucose monitoring sensor which records
the BGC every 5 minutes and gives an estimate to the patient
via digital applications. Current CGM sensors sound alarms
when the hyperglycemia level has been crossed, however they
cannot make predictions about such hyperglycemia events.
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This research paper takes the data obtained from CGM
sensors and fits a mathematical predictive model to it.
Thus, the mathematical model of Partial Least Squares
Regression was used to model the continuous blood
glucose concentration data obtained from the CGM
sensors. After fitting the model, the prediction values of
the BGC were calculated. The mean square error for all
the future predictions was also calculated as well as the
optimal parameters of past horizon and the number of
latent variables were determined. Using the optimized
parameters, predictions of BGC were also calculated
for different future horizons. The error associated with
these predictions also gave an estimate on how well the
model works for different past and future horizons. This
research will certainly enable patients suffering from
T2D to better manage their BGC since they will have
longer periods of time of knowing whether or not they
will suffer a hyperglycemia event.
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