
(Quasi-)Monte Carlo Importance Sampling with QMCPy
Aleksei G. Sorokin

1
, Fred J. Hickernell

1
, Sou-Cheng T. Choi

1,2
, Michael J. McCourt

3
, and

Jagadeeswaran Rathinavel
1,4

1Department of Applied Mathematics, Illinois Institute of Technology, RE 220, 10 W. 32nd St., Chicago,
IL 60616.; 2Kamakura Corporation, 2222 Kalakaua Ave, Suite 1400, Honolulu, HI 96815.; 3SigOpt, an
Intel company, 100 Bush St., Suite 1100, San Francisco, CA 94104.; 4Wi-Tronix LLC, 631 E Boughton
Rd, Suite 240, Bolingbrook, IL 60440

(Quasi-)Monte Carlo, (Q)MC, methods are a

class of powerful numerical integration algo-

rithms that have been proven to scale well

to high dimensions. Various techniques exist

to decrease the computational cost of (Q)MC

methods. This article focuses on importance

sampling, a technique that performs variable

transformations to make the integral easier

for (Q)MC approximation. The build up to

composed importance sampling is paralleled

by code from our QMCPy package that imple-

ments these concepts.

Quasi-Monte Carlo | Importance Sampling |
Numerical Software

Monte Carlo methods have become science’s
sharpest tool for high dimensional numerical

integration. In low dimensions, using Gaussian
quadrature, Simpson’s rule, or similar numerical
methods will provide fast, accurate approxima-
tion. However, as the dimension of the problem
grows, these methods quickly become computa-
tionally intractable. By introducing randomness,
Monte Carlo methods are able to approximate
high dimensional integrals much more e�ciently
than the aforementioned techniques.

The central idea of Monte Carlo integration
is to view an integral as the expectation of a
function of a random variable with a well-defined
probability distribution. Samples may then be
drawn from that probability distribution, and
the sample average of the corresponding function
evaluations is the Monte Carlo integral estimate.
The form of the integral that is amenable to
Monte Carlo integration may require applying a
change of variables to the original integral.

Monte Carlo methods can be improved with
two central ideas: smarter sampling and rewriting
the integrand. While standard Monte Carlo (MC)

methods sample the probability distribution at
independent nodes, Quasi-Monte Carlo (QMC)
methods carefully coordinate sampling locations
to achieve significantly faster convergence to the
true mean. QMC methods can be straightforward
to adapt to your standard MC problem, often
requiring little more than replacing independent
samples with low-discrepancy sequences.

Often times, the integrand can be rewritten to
mitigate sharp peaks and valleys while preserv-
ing the value of the integral. These smoothing
transforms make the integrand easier for (Q)MC
methods to approximate. Control variates and
importance sampling are among the most e�ec-
tive rewriting methods, although the choice of
good control variate functions and importance
sampling measures is currently more of an art
than a science.

In this article, we focus on importance sam-
pling and an extension to support multiple mea-
sures in a framework we call composed impor-
tance sampling. We have implemented this frame-
work into QMCPy (1), our community developed

Significance Statement

This work discusses the mathematics and
implementation of importance sampling for
(Quasi-)Monte Carlo methods. We extend the
standard development to accommodate multi-
ple measures in a composed importance sam-
pling framework. This framework is demon-
strated using our implementation in QMCPy, a
community driven Quasi-Monte Carlo software.

1

49

Sana Basheer

Quasi-Monte Carlo Library in Python 3. Python
was chosen to help make QMCPy easily accessi-
ble to the community and extendable by decades
of research in (Q)MC. Throughout this work, we
use QMCPy to demonstrate the benefits of impor-
tance sampling through a running example from
Keister (2). Those interested in following the
development of QMCPy should visit qmcpy.org.

The remainder of this article is organized as
follows. We first present the (Q)MC problem
and di�erentiate between MC and QMC meth-
ods. We then generalize the (Q)MC problem to
incorporate importance sampling and extend this
notion to composed importance sampling. We
end by summarizing developments, discussing fu-
ture research, and linking to additional resources
for the QMCPy package.

(Quasi-)Monte Carlo Methods

The model problem for (Q)MC takes the form of

µ =
⁄

T
g(t)⁄(t) dt, [1]

where g : T æ R is the original integrand and
⁄ : T æ R+ is a non-negative weight function
which we call the true measure. Often times the
true measure is a probability distribution, but we
are not restricted to this setting. For instance,
the Lebesgue measure can be used by setting
⁄(t) = 1.

In order to perform (Q)MC simulation, we
rewrite Eq. [1] as the d dimensional integrand

µ =
⁄

[0,1]d
f(x) dx, [2]

where the transformed integrand is

f(x) = g(�(x))⁄(�(x))|�Õ(x)|. [3]

The change of variables is captured in � :
[0, 1]d æ T , the transform, and is central to
importance sampling. We denote the Jacobian
determinant of this transform by |�Õ(x)|. Eq. [2]
can be viewed as taking the expectation of f(X)
when X ≥ U [0, 1]d.

(Q)MC methods approximate the true mean µ
by the sample mean of f evaluated at sampling

Fig. 1. IID points contrasted with LD Sobol’
points, both mimicking U [0, 1]2. Note how the
LD sequence covers the domain more evenly than
the IID points.

nodes X0, X1, . . . , Xn ≥ U [0, 1]d. We denote
the n-sample mean by µ̂n so that

µ̂n = 1
n

n≠1ÿ

i=0
f(X i) ¥

⁄

[0,1]d
f(x) dx = µ.

Standard MC methods select X0, X1, X2, . . .
to be independent and identically distributed
(IID). Recall that the multivariate probability
distribution of n IID points is the product of the
marginals: Fn(x0, . . . , xn≠1) = rn≠1

i=0 F (xi). If
X is a standard uniform random variable, then
F (x) = x1 · · · xd for x := (x1, . . . , xd) œ [0, 1]d.

QMC methods carefully select sampling nodes
{X i}n≠1

i=0 so that their empirical distribution mim-
ics F better than the empirical distribution of
IID points. The discrepancy is a measure of the
di�erence between an empirical distribution and
a target distribution. Therefore, the sampling
nodes used by QMC methods are called low-
discrepancy (LD) node sets. Common examples
of LD node sets are digital sequences, integration
lattices, and Halton points. Figure 1 contrasts
IID and LD node sets that mimic U [0, 1]2. No-
tice how the IID points leave gaps and clusters
while the LD sequence covers the domain more
uniformly. This better uniformity, or lower dis-
crepancy, enables QMC integral approximation
to converge significantly faster than standard MC
methods.

2 | Sorokin et al.

50

https://qmcpy.org
Sana Basheer

Importance Sampling

When true measure ⁄ corresponds to a proba-
bility density, we can often select a transform
� so that ⁄(�(x))|�Õ(x)| = 1, i.e. the weight
and Jacobian cancel. In this case, Eq. [3] sim-
plifies to f = g ¶ �, which is relatively easy to
evaluate. However, it may be necessary or advan-
tageous to choose � so the weight and Jacobian
do not cancel. For instance, no canceling trans-
form exists when ⁄ corresponds to a Lebesgue
measure on Rd. As we will show later, select-
ing � so ⁄(�(x))|�Õ(x)| ”= 1 can often speed
up a (Q)MC approximation even if a canceling
transform does exist.

Importance sampling tries to select a trans-
form � to better sample the original integrand
in places of higher variation. In doing so, the
transformed integrand has lower variation and is
therefore easier for (Q)MC methods to approxi-
mate. Specifically, anytime ⁄(�(x))|�Õ(x)| ”= 1,
we are performing importance sampling. In
this case, we say �(X) is stochastically equiva-
lent to a random variable with density ⁄̃ when
X ≥ U [0, 1]d. This implies ⁄̃(�(x))|�Õ(x)| = 1
for some ⁄̃ : T æ R+ so that

f(x) = g(�(x)) ⁄(�(x))
⁄̃(�(x))

. [4]

The choice of �, or equivalently ⁄̃, is currently
a manual task that often requires a good deal of
problem-specific knowledge.

The Keister Integrand. Suppose we want to ap-
proximate the following integrand from Keister

µ =
⁄

Rd
cos(ÎtÎ) exp(≠ÎtÎ2)dt. [5]

Notice that we may split the integrand into orig-
inal function g and true measure ⁄ so that

µ =
⁄

Rd
fid/2 cos(ÎtÎ)
¸ ˚˙ ˝

g(t)

fi≠d/2 exp(≠ÎtÎ2)
¸ ˚˙ ˝

⁄(t)

dt, [6]

and ⁄ is the probability density of a multivariate
Gaussian with mean 0 and covariance I/2. We
denote the density of this true measure by ⁄(t) =
N (t|0, I/2).

To approximate this integral, we use QMCPy,
a community-develop QMC package for Python.
QMCPy includes the Keister integrand as just
defined. To set up the (Q)MC problem without
importance sampling, we only need to define a LD
sequence. In this case, we choose the LD Sobol’
sequence (see Figure 1) in order to perform QMC
quadrature.

First, we import QMCPy via:
>>> import qmcpy as qp

Then, we initialize a 3-dimensional Sobol’ se-
quence and Keister integrand:

Listing 1. Standard Keister Construction
>>> d = 3
>>> sobol = qp.Sobol (d,seed =11)
>>> K_std = qp.Keister (sobol)

The transform defaults to �(x) = �≠1(x)/
Ô

2,
where �≠1 is the element-wise inverse CDF of a
standard Gaussian. This transform was chosen
so that ⁄(�(x))|�Õ(x)| = 1, and we recover f =
g¶�. Therefore, our standard, or default, Keister
function is not using importance sampling.

To evaluate the integrand, we first generate
samples from the Sobol’ sequence. These samples
are then input to the transformed integrand, f ,
which was automatically constructed for us by
QMCPy.
>>> x = sobol.gen_samples (2**4)
>>> y = K_std.f (x)

Figure 2 shows the standard Keister integrand in
one-dimension evaluated at the first 24 points of
a scrambled Sobol’ sequence.

We may now run a QMC quadrature algorithm
to approximate the integrand to within absolute
tolerance ‘ = 5e-6.

Listing 2. Stopping Criterion Evaluation
>>> sc = qp.CubQMCSobolG (
... integrand = K_std,
... abs_tol = 5e -6)
>>> sol,data = sc.integrate ()

In this case the stopping criterion algorithm,
which determines the number of samples nec-
essary to achieve the desired tolerance, is based

3 | Sorokin et al.

51

Sana Basheer

on the decay of the integrand’s Fourier Walsh
coe�cients. The outputs of calling integrate()
on the qp.CubQMCSobolG (3) stopping criterion
are a numerical solution and data object that
houses integration information. Table 1 collects
the number of samples and run time from this
data object.

We now turn our attention to importance
sampling the Keister integrand. For this ex-
ample, we choose transform �(x) =

Ô
3�≠1 so

that ⁄̃(t) = N (t|0, 3I) and ⁄̃(�(x))|�Õ(x)| = 1.
Therefore, our transformed Keister integrand be-
comes

f(x) = fid/2 cos(Î�(x)Î) N (�(x)|0, I/2)
N (�(x)|0, 3I) .

In QMCPy, we first define our importance sam-
pling measure, in this case N (0, 3I), and then use
it to construct our Keister integrand with an
importance sampler.

>>> transform = qp.Gaussian (
... sampler = sobol,
... mean = 0,
... covariance = 3)
>>> K_gauss = qp.Keister (transform)

Note how we construct the Keister integrand
using the Gaussian importance sampling mea-
sure rather than the sobol generator as done
in Listing 1. A one-dimensional version of this
importance sampling integrand is plotted in Fig-
ure 2 as Gauss Keister IS. While the one and
three dimensional Keister examples give similar
savings for this example, it is not always the case
that copying parameters to di�erent dimensions
will result in similar success.

QMC integration of the above Keister function
with importance sampling is done in an anal-
ogous manner to Listing 2. Table 1 compares
the required time and samples against the non-
importance sampled Keister. Notice how the
savings in samples is greater than the savings
in time since the importance sampling integrand
requires an additional Jacobian computation at
each sample.

Composed Importance Sampling

We now generalize importance sampling to allow
multiple sub-transforms. Let �0(x) = x and de-
note the composition of the first ¸ (non-identity)
sub-transforms by �̂¸ = (�¸ ¶ �¸≠1 ¶ · · · ¶ �0).
Therefore, the complete L sub-transform com-
position is � = �̂L. The sub-transforms must
be compatible with the discrete distribution and
true measure, meaning �¸ : [0, 1]d æ [0, 1]d for
¸ = 1, . . . L ≠ 1 and �L : [0, 1]d æ T . Define ⁄l

to be the density of �¸(X¸) for X¸ ≥ U [0, 1]d so
that ⁄¸(�¸(x))|�Õ

¸(x)| = 1. The chain rule then
implies that

f(x) = g(�̂L(x)) ⁄(�̂L(x))
LŸ

¸=1
|�Õ

¸(�̂¸≠1(x))|

= g(�̂L(x)) ⁄(�̂L(x))
rL

¸=1 ⁄¸(�̂¸(x))
.

The Keister Integrand. Let us now return to the
Keister integrand which is defined in Eq. [6] with
original integrand g(t) = fid/2 cos(ÎtÎ) and true
measure ⁄(t) = N (t|0, I/2). Suppose we are in-
terested in importance sampling by a composed
Gaussian-Kumaraswamy distribution. The Ku-
maraswamy distribution (4), denoted K(a, b),
may be sampled via an inverse CDF transform
�K : [0, 1]d æ [0, 1]d, and the Gaussian distri-
bution, denoted N (µ, � = AAT), may be sam-
pled via transform �G : [0, 1]d æ Rd defined as
�G(x) = A�≠1 + µ. Again, �≠1 is the element-
wise inverse CDF transform of a standard nor-
mal. Due to the nature of these transforms, we
have ⁄K(t) = K(t|a, b), ⁄G(t) = N (t|µ, �), and
⁄K(�K(x))|�Õ

K(x)| = 1 = ⁄G(�G(x))|�Õ
G(x)|.

Therefore, we define the complete transform as
� = �G ¶ �K so that

f(x) = fid/2 cos(Î�(x)Î) N (�(x)|0, I/2)
K(�K(x)|a, b) N (�(x)|µ, �) .

In QMCPy, we compose transforms through
the nested construction of measure objects. The
following code uses the sobol instance from List-
ing 1 to construct the first Kumaraswamy trans-
form which is used to construct the second Gaus-
sian transform. Note how the construction of

4 | Sorokin et al.

52

Sana Basheer

Sana Basheer

Table 1. Comparing the time (seconds) and samples
necessary to integrate Keister functions to within
absolute tolerance 5e-6. The percent usage of im-
portance sampling (IS) integrands compared to the
standard, non-importance sampling, integrand are
also displayed. Using importance sampling signifi-
cantly decreases the computational budget required
for accurate approximation. The Sobol sequence and
corresponding stopping criterion favor sample sizes
that are powers of 2.

Time Samples
Standard Keister 3.8 222

Gauss Keister IS 2.6 (70%) 221 (50%)
Gauss-Kuma Keister IS 1.3 (35%) 220 (25%)

QMCPy objects reflects the composition of sub-
transforms used to define the complete transform.
Finally, the Gaussian-Kumaraswamy measure is
used to construct a Keister integrand which de-
fines the original integrand and true measure.
>>> tf_K = qp.Kumaraswamy (
... sampler = sobol,
... a = .8,
... b = .8)
>>> tf_G = qp.Gaussian (
... sampler = tf_K)
>>> K_Gauss_Kuma = qp.Keister (tf_G)

Figure 2 plots a one-dimensional Gauss-Kuma
Keister IS function against the Keister func-
tions developed previously. Again, we may inte-
grate the composed importance sampling mea-
sure using Listing 2. The results of this integra-
tion are displayed in Table 1. Both importance
sampling examples deliver significant savings in
time and samples compared to the standard, non-
importance sampling, Keister integrand.

Conclusion

In this work we have presented and exemplified
importance sampling for (Quasi-)Monte Carlo
methods. Specifically, we focused on developing
the composed importance sampling framework
and showing its potential to improve the e�ciency
of Quasi-Monte Carlo approximation. Through-
out this work, the QMCPy package was used to

Fig. 2. The Keister integrand without importance
sampling (Standard Keister), with Gaussian
importance sampling (Gaussian Keister IS),
and with composed Gaussian-Kumaraswamy im-
portance sampling (Gauss-Kuma Keister IS).
Each transformed integrand shows the sampling
locations of the same 16 scrambled Sobol’ points.
The lower variation of importance sampling inte-
grands makes their (Q)MC approximation more
e�cient.

easily setup and execute importance sampling in
a flexible and intuitive framework.

Future Work. Control variates are another popu-
lar and powerful technique to rewrite the original
integral. In the future, we plan to add support
for control variates into QMCPy. We hope QM-
CPy’s support for these performance enhancing
techniques will allow (Q)MC researchers and prac-
titioners to more easily access their benefits.

While importance sampling and control vari-
ates can provide substantial benefits to (Q)MC
methods, the choice of an e�ective importance
sampling measure or control variate function is
currently a di�cult and manual task. In the
future we hope to develop algorithms to automat-
ically select good importance sampling measures
and control variate functionals, perhaps using
machine learning. If successful, we would like to
implement these methods into QMCPy to extend
their benefits to a wider user base.

5 | Sorokin et al.

53

Sana Basheer

QMCPy Resources. To learn more about QM-
CPy for (Quasi-)Mote Carlo, we recommend our
article for the MCQMC2020 proceedings (5) and
the resources therein. Those interested in fol-
lowing the development of QMCPy are urged to
visit qmcpy.org or view our GitHub repository at
github.com/QMCSoftware/QMCSoftware.

Acknowledgements. We would like to thank
SigOpt and National Science Foundation grant
DMS-1522687 for their continued support of this
project.

References

1. Sou-Cheng T. Choi, Fred J. Hickernell, R. Ja-
gadeeswaran, Michael J. McCourt, and Alek-
sei G. Sorokin. QMCPy: A Quasi-Monte Carlo
Python library, 2020+. URL https://github.com/
QMCSoftware/QMCSoftware.

2. B. D. Keister. Multidimensional quadrature
algorithms. Computers in Physics, 10:119–
122, 1996. .

3. Fred J. Hickernell and Lluís Antoni Jiménez
Rugama. Reliable adaptive cubature using
digital sequences, 2014.

4. P. Kumaraswamy. A generalized proba-
bility density function for double-bounded
random processes. Journal of Hydrology,
46(1):79–88, 1980. ISSN 0022-1694. .
URL https://www.sciencedirect.com/science/
article/pii/0022169480900360.

5. Sou-Cheng T. Choi, Fred J. Hickernell, R. Ja-
gadeeswaran, Michael J. McCourt, and Alek-
sei G. Sorokin. Quasi-monte carlo software,
2021.

6 | Sorokin et al.

54

https://qmcpy.org
https://github.com/QMCSoftware/QMCSoftware
https://github.com/QMCSoftware/QMCSoftware
https://github.com/QMCSoftware/QMCSoftware
https://www.sciencedirect.com/science/article/pii/0022169480900360
https://www.sciencedirect.com/science/article/pii/0022169480900360
Sana Basheer

