
DNPC: A Dynamic Node-level Power Capping Library for
Scientific Applications
Sahil Sharma

a,1
, Zhiling Lan

a
, Xingfu Wu

b
, and Valerie Taylor

b

a Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616 ; b

Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439

As the race to exa-scale computing acceler-

ates, power consumption continues to be a

critical challenge. While several technologies

are available for power management, balanc-

ing energy efficiency and application perfor-

mance during execution remains an impor-

tant topic of research. In this study, we

develop an open-source library called DNPC

for dynamically controlling an application’s

package-level power consumption during ex-

ecution. Given a specific performance degra-

dation threshold, DNPC aims to minimize

power consumption by following the applica-

tion’s power profile and adjusting the power

cap accordingly. Further, DNPC is able to es-

timate the online performance of an applica-

tion under capping, and predict its estimated

performance degradation relative to an un-

capped run. In this paper, we present an

overview of the library, followed by a case

study to illustrate the use of DNPC with an Ex-

ascale Computing Project proxy application

on a production supercomputer at Argonne

National Laboratory.

High-Performance Computing | Power Manage-
ment | Online Performance Monitoring

Current high-performance computing (HPC) systems re-
quire a large amount of electricity to operate system

components. As HPC systems increase in scale and capability,
the cost of supplying power to these systems will grow as well.
In fact, it is estimated that the energy cost of a large-scale
system during its lifetime can surpass the equipment itself (1).
This introduces the urgent need for energy e�cient computing
through controlling power consumption. However, there is
not one clear solution to achieve this result. The PowerStack
initiative provides a holistic and extensible power management
framework (2). It defines power management interfaces at
three specific levels: cluster scheduler, job-level runtime sys-
tems, and node-level managers. The Global Extensible Open
Power Manager (GEOPM) from Intel is a framework for ex-
ploring power and energy optimization. It provides an energy
profiling and monitoring tool as well as multi-node power bal-
ancer to optimize power across nodes based on work imbalance.
RAPL exposes a number of model-specific registers (MSRs)
that can be used to monitor energy and set power limits on
di�erent parts of a chip (3). PoLiMEr provides C functions

to leverage RAPL for application-level power monitoring and
capping (4).

While the tools above provide useful monitoring or certain
power management capabilities, little work has been done
to investigate when and how much power capping should be
applied during application execution. In particular, an open
question is: given a specific bound for application performance
degradation, how can we dynamically adjust the power cap
during execution so as to minimize power usage? PoLiMEr
includes functions to set and monitor power caps, but these
must be set manually and are limited to functions visible within
the application source code. This requires o�ine analysis of
the application to know when and how much to set the power
cap to. Additionally, every time an adjustment to the capping
scheme is made, the application source code must be modified
and recompiled. Gholkar et al. developed UPScavenger, a
runtime system to save power by dynamically detecting phase
changes and automatically tuning uncore frequency during
application execution (5). UPScavenger targets uncore power
saving and is not designed for package level power saving.

In this study, we aim to address this problem by developing
DNPC, a Dynamic Node-level Power manager and Capping
library for high-performance computing. A key challenge is
to estimate online performance during application execution.
Ramesh et al. (6) found that online performance is highly
correlated with the figure of merit; however their work is lim-
ited to the applications for which a figure of merit is defined.
Our work addresses this issue through fine-grained power pro-
filing and active hardware counter analysis. DNPC directly
incorporates PoLiMEr and PAPI (7). It includes several adap-
tive algorithms for runtime performance prediction and power
capping. DNPC is also able to detect and follow patterns in
the power curve, called power phases, without o�ine profiling.
Another key feature is that DNPC can estimate the online per-
formance of the application based on execution time relative
to uncapped performance, and use this estimation to control
the predicted amount of performance degradation from power
capping. The library can utilize the detection of phases to set
the appropriate package power cap to minimize power during
execution. DNPC is easy to use: to use the library, a user only
needs to insert a couple of lines of code into their application
code.

DNPC Overview

DNPC allows easy dynamic package power capping of single
node applications written in C or C++. Currently, there are
no plans to extend DNPC to monitor multiple nodes at once.

1 To whom correspondence should be addressed. E-mail: ssharma18@hawk.iit.edu

1

55 

Sana Basheer



#include "dnpc.h"

int main(int argc, char *argv[])

{

/* application code */

MPI_Init(&argc, &argv);

dnpc_init();

/* application code */

dnpc_finalize();

MPI_Finalize();

/* application code */

}

Listing 1. An example to illustrate the use of
DNPC with an application

It works by combining the energy monitoring and hardware
counter monitoring of PoLiMEr and PAPI, respectively. It
employs one of any number of built-in or user-supplied algo-
rithms during run-time to periodically and dynamically set a
power cap.

Algorithms. While DNPC uses PoLiMEr and PAPI to monitor
an application’s behavior, its main benefit comes from using
the data from these libraries every polling cycle as inputs to a
run-time algorithm that outputs a power cap to set. Only one
algorithm can be used for an application’s execution. While
the user can easily add their own algorithm, four di�erent
dynamic capping algorithms are already implemented within
DNPC. More will be added as we continue investigating power
management. Their designs are based on state machines in
order to be easy to interpret and to have minimal overhead.
These four algorithms are briefly explained here.

1. The first algorithm examines the current frequency read-
ing to decide if power capping is needed, and looks at the
change in instructions per cycle (IPC) to determine phase
changes before adjusting the power cap.

2. The second algorithm builds upon the first by estimating
the current online performance and adjusting the amount
to set the cap based on that estimate and the degradation
threshold.

3. The third algorithm is similar to the second, but exchanges
the change in IPC for the change in the ratio of micro-
operations to normal instructions to determine phase
changes.

4. The last algorithm is an iteration of the third, switching
the order in which the micro-operation ratio and current
frequency are checked in determining phase changes and
power capping candidates.

Using DNPC. DNPC is implemented in C and contains about
1000 lines of code. The core interface only consists of two
functions: one to initialize the library, and the other to fi-
nalize it. Before modifying the application code, PoLiMEr,
PAPI, and an implementation of MPI should be compiled and
available on the system. PoLiMEr should be compiled with
the TIMER_OFF flag, as signal-based timers will conflict with
DNPC’s internal timer. While DNPC is a user-level library,

PoLiMEr internally uses RAPL for power capping, so the user
should contact their system administrator for privileges to
read/write certain MSRs as outlined in PoLiMEr’s documen-
tation. After the appropriate setup, the only modifications
to the source code required are shown in Listing 1. After the
application is run, it will output four files with the energy,
performance, and counter data recorded.

The flexibility of DNPC comes in its configuration through
environment variables. This allows di�erent environment set-
tings within a batch submission script to be set without having
to recompile the library or the application. Some important
environment variables that can be set are the dynamic capping
algorithm, the performance degradation threshold, the polling
interval, PAPI counters to collect, and more.

Adding a new power capping algorithm is simple as well.
The only steps required are to first write a new function within
the dnpc.c file, add the function to the dnpc.h file, and finally
add it as case within the polling function’s algorithm switch

statement.
We plan to release the library as open source on GitHub af-

ter we extensively evaluate the library with more applications.

Application Case Study

We now show a case study of applying DNPC to an application
to illustrate the benefits of the library. The application is an
Exa-scale Computing Project (ECP) proxy app (8) called
MiniQMC. MiniQMC is a "mini" version of QMCPACK (9)
designed to be used for benchmarks and optimization testing,
and it is available freely on GitHub or from the ECP website.
MiniQMC uses di�erent quantum Monte Carlo algorithms in
order to calculate the total energy of a quantum mechanical
system. Di�erent algorithms and kernels present opportunities
within the power profile for power cap adjustments.

MiniQMC was configured with DNPC, MPI, 64 OpenMP
threads, and a problem size of 128 atoms and 1536 electrons.
We then performed the following experiment on a single node
of the Cray XC40 supercomputer Theta at Argonne National
Laboratory. Each Theta node is equipped with 192 GiB of
DRAM, 16 GiB of MCDRAM, and an Intel KNL 7230 proces-
sor with 64 cores. On the same node, we first ran MiniQMC
without any power capping, then again using dynamic power
capping based on Algorithm 3 from DNPC. Each configuration
had three trials taken, and the results of one of the trials for
each is shown in Figure 1. In the evaluation, the median value
from the trials was taken for each metric.

Looking at Figure 1b, it can be seen that the dynamic
power cap curve follows the phases of the power curve and
adapts accordingly. Also important to note is that the power
cap curve becomes more conservative as time goes on due
to the estimated performance approaching the degradation
threshold of 5%. Three metrics are used in our evaluation:

1. Execution Time
It is defined as how much time the application runs for.

2. Total Energy
It is defined as the total amount of energy consumed by
the package and the DRAM during the execution of the
application with a dynamic package power cap.

3. Rescued Energy
It is defined as the area between the power given by the

2 | Sharma et al.

56 

Sana Basheer



(a) MiniQMC Without Power Capping

(b) MiniQMC With Dynamic Power Capping (Alg. 3), and Degradation Threshold of 5%

Fig. 1. Power profiles of executions of MiniQMC. (1a) Trial without power capping. (1b) Trial with
dynamic power capping from DNPC. In 1a, we assume the system-level power manager has given
the node a power cap set to the TDP of the processor. In 1b, where there is a dynamic power cap
that is typically below TDP, the system-level power manager can reclaim the rescued energy and
distribute to other jobs.

system-level power manager and the power cap set by
DNPC. In our experiment, the Thermal Design Power
(TDP) of 215 Watts is used as the default power cap given
by the system-level power manager. This metric is similar
to the stranded power metric used in the context of power
grids (10).

The first two metrics are calculated using the median value of
the dynamic power cap configuration normalized by the median
value of the configuration without a power cap. The third
metric is di�erent in that it is normalized by the total energy
from the configuration without a power cap rather than the
rescued energy (since it is zero for the baseline configuration).

While not directly an evaluation metric, the accuracy be-
tween the (normalized) execution time predicted by DNPC and
the actual execution time is important to consider. Predicting
the total execution time at run-time, or online performance,
is di�cult as many factors can a�ect the runtime. DNPC
simplifies this prediction by not predicting the actual time,
but by predicting the estimated percent of performance degra-
dation from using a power cap compared to not using one. It
updates this prediction every polling cycle, and a user can
supply a constraint that DNPC will try to stay under while
power capping.

Looking at the results of MiniQMC under a dynamic power
cap, there are two main takeaways. The first being that the
dynamic package power cap may not always bring energy
savings. The (normalized) total energy for MiniQMC under
Algorithm 3 was 1.00, which means the total energy used
under a dynamic power cap was the same as the typical case
without one. In this case, the increased execution time from

the power capping caused the total energy to be the same
despite the lower average power usage. This could mean that
this MiniQMC specifically is less receptive to power capping, or
that this algorithm performs poorly in terms of energy savings.
In either case, more tests on di�erent applications will have
to be taken in order to verify these findings. However, the
rescued energy presents a great benefit from dynamic power
capping. The baseline configuration of MiniQMC does not
have a power cap, so we assume that the power cap seen by
the power manager above the node to be the TDP of the
processor. Therefore, the configuration without a power cap
in this case has no rescued energy. The rescued energy for
MiniQMC under Algorithm 3 was 0.19, or an amount of energy
equivalent to 19% of the total energy used in the configuration
without a dynamic power cap was reclaimed. Although the
total energy used did not decrease, in a multi-node system the
rescued energy could be allocated to other nodes.

The second takeaway being that DNPC can estimate the
online performance with close accuracy. MiniQMC’s (normal-
ized) execution time under Algorithm 3 was 1.05, while its
online estimation for that metric was 1.06. Further, since it
was given a performance degradation threshold of 5%, this
shows it was also able to enable the dynamic power cap while
staying within that constraint.

ACKNOWLEDGMENTS. This work is supported in part by US
National Science Foundation grants CCF-1618776 and CCF-1801856.
We acknowledge Argonne Leadership Computing Facility for use of
the Cray XC40 Theta machine.

3 | Sharma et al.

57 

Sana Basheer



References

1. Peter Kogge, S. Borkar, Dan Campbell,
William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Jon
Hiller, Stephen Keckler, Dean Klein, and
Robert Lucas. Exascale computing study:
Technology challenges in achieving exas-
cale systems. Defense Advanced Re-
search Projects Agency Information Pro-
cessing Techniques Office (DARPA IPTO),
Techinal Representative, 15, 01 2008.

2. Christopher Cantalupo, Jonathan Eastep,
Siddhartha Jana, Masaaki Kondo, Matthias
Maiter, Aniruddha Marathe, Tapasya Patki,
Barry Rountree, Ryuichi Sakamoto, Martin
Schulz, and Carsten Trinitis. A strawman for
an hpc powerstack. Technical report, 2018.

3. Howard David, Eugene Gorbatov, Ulf Haneb-
utte, Rahul Khanna, and Christian Le. Rapl:
Memory power estimation and capping. In
ISLPED, pages 189–194, 01 2010. .

4. Ivana Marincic, Venkatram Vishwanath, and
Henry Hoffmann. Polimer: An energy moni-
toring and power limiting interface for hpc ap-
plications. In Proceedings of the 5th Interna-
tional Workshop on Energy Efficient Super-
computing, E2SC’17, New York, NY, USA,
2017. Association for Computing Machinery.
ISBN 9781450351324. . URL https://doi.org/
10.1145/3149412.3149419.

5. Neha Gholkar, Frank Mueller, and Barry
Rountree. Uncore power scavenger: A
runtime for uncore power conservation on
hpc systems. In Proceedings of the Inter-
national Conference for High Performance
Computing, Networking, Storage and Analy-
sis, SC ’19, New York, NY, USA, 2019. As-
sociation for Computing Machinery. ISBN
9781450362290. . URL https://doi.org/10.
1145/3295500.3356150.

6. S. Ramesh, S. Perarnau, S. Bhalachandra,
A. D. Malony, and P. Beckman. Understand-
ing the impact of dynamic power capping on
application progress. In 2019 IEEE Inter-
national Parallel and Distributed Processing
Symposium (IPDPS), pages 793–804, 2019.
.

7. Dan Terpstra, Heike Jagode, Haihang You,
and Jack Dongarra. Collecting performance
data with papi-c. In Matthias S. Müller,
Michael M. Resch, Alexander Schulz, and
Wolfgang E. Nagel, editors, Tools for High
Performance Computing 2009, pages 157–
173, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-11261-
4.

8. Ecp proxy apps suite, 2021. URL
https://proxyapps.exascaleproject.org/
ecp-proxy-apps-suite/.

9. Jeongnim Kim, Andrew D Baczewski,
Todd D Beaudet, Anouar Benali, M Chan-
dler Bennett, Mark A Berrill, Nick S Blunt,
Edgar Josué Landinez Borda, Michele
Casula, David M Ceperley, Simone Chiesa,
Bryan K Clark, Raymond C Clay, Kris T
Delaney, Mark Dewing, Kenneth P Esler,
Hongxia Hao, Olle Heinonen, Paul R C Kent,
Jaron T Krogel, Ilkka Kylänpää, Ying Wai
Li, M Graham Lopez, Ye Luo, Fionn D Mal-
one, Richard M Martin, Amrita Mathuriya,
Jeremy McMinis, Cody A Melton, Lubos
Mitas, Miguel A Morales, Eric Neuscamman,
William D Parker, Sergio D Pineda Flores,
Nichols A Romero, Brenda M Rubenstein,
Jacqueline A R Shea, Hyeondeok Shin, Luke
Shulenburger, Andreas F Tillack, Joshua P
Townsend, Norm M Tubman, Brett Van Der
Goetz, Jordan E Vincent, D ChangMo
Yang, Yubo Yang, Shuai Zhang, and Lun-
ing Zhao. QMCPACK: an open sourceab
initioquantum monte carlo package for the
electronic structure of atoms, molecules
and solids. Journal of Physics: Condensed
Matter, 30(19):195901, apr 2018. . URL
https://doi.org/10.1088/1361-648x/aab9c3.

10. K. Kim, F. Yang, V. M. Zavala, and A. A.
Chien. Data centers as dispatchable loads
to harness stranded power. IEEE Transac-
tions on Sustainable Energy, 8(1):208–218,
2017. .

4 | Sharma et al.

58 

https://doi.org/10.1145/3149412.3149419
https://doi.org/10.1145/3149412.3149419
https://doi.org/10.1145/3295500.3356150
https://doi.org/10.1145/3295500.3356150
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://doi.org/10.1088/1361-648x/aab9c3
Sana Basheer


