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We consider the external multi-particle diffusion-limited aggregation
(MDLA) process on the 2-dimensional integer grid. In this random
growth process, particles are distributed uniformly at random on the
grid and undergo a simple symmetric random walk with exclusion.
They walk until they contact a collection of particles centered at the
origin, at which point they attach. Iterating this process, a cluster
forms. Since its inception, DLA models in the plane have resisted
rigorous mathematical treatment. Whereas mathematicians have
succeeded in establishing scaling limits for other stochastic growth
models, this result for DLA processes remains elusive. Recent find-
ings in (1) establish a connection between the 1-dimensional MDLA
process and solutions to a partial differential equation known as
the super-cooled Stefan problem in one space dimension (1SSP). By
fully characterizing the solutions to 1SSP, scaling limits for the 1-
dimensional MDLA process were proven. It is natural to conjecture
that a similar connection holds between 2-dimensional MDLA and
SSP in two space dimensions. To address this conjecture, we take a
numerical approach. We simulate the 2-dimensional MDLA process
by decreasing the grid mesh towards 0. By studying the regularity
of the cluster’s interior and the statistical properties of its boundary,
we show that the 2-dimensional MDLA process does not converge to
solutions of 2SSP. We discuss why this process fails and propose
possible resolutions.

Di�usion limited-aggregation | Super-cooled Stefan problem

Stochastic growth processes of the di�usion-limited aggre-
gation (DLA) type have attracted great interest since their

introduction by Witten and Sander in (11). In this classical
DLA model, we start with a single seed point centered at
the origin of Z2, and generate a second particle according to
a chosen distribution away from the seed point, and allow
this particle to take steps of unit size following a symmetric
random walk. This particle walks until it visits a site adjacent
to the seed, at which point the particle attaches to the cluster.
A third particle is spawned on Z2 away from the cluster and
follows a symmetric random walk until it contacts the cluster
and attaches. We iterate this process until the cluster grows
to some satisfactory size. Rosenstock and Marquardt ex-
panded the original DLA model in (7) by letting the aggregate
grow in Zd by starting with the initial cluster as a point {0},
and attaching a neighboring site whenever a particle from a
process evolving outside of the aggregate enters a site adjacent
to the aggregate. Notably, in contrast to the classical DLA
model, these particles evolve simultaneously. We refer to such
a growth process as multi-particle DLA (MDLA). Much of the
interest in DLA-type models focuses on the dendritic nature
of the aggregates formed. These structures qualitatively agree
with the shapes observed experimentally in crystallization,
electrodeposition, and bacteria colony growth (8).

Fig. 1. Classical DLA cluster for N = 1000.

To illustrate the dendritic and fractal-like nature of the
boundary of DLA aggregates, we have implemented a variant of
the classical DLA model with several convenient optimizations
made to reduce computational costs. Algorithm 1 is capable
of producing a cluster on a 1000 ◊ 1000 grid in four hours,
running in Python.

Many numerical simulation studies of the aggregates result-
ing from DLA (6, 9, 10) have led to estimations of the fractal
dimension of the aggregate as ¥ 1.7 in two space dimensions
(4, 5). Despite the interest in DLA processes, the mathematical
theory of such processes in Zd for d Ø 2 is poorly understood.
Indeed, Sander describes the DLA process as a “devilishly
di�cult model to solve, even approximately” in (11). For the
aggregate in (9), the only rigorous mathematical results we
have is an upper bound on its radius upon the attachment
of n sites, and an almost sure convergence to infinity of the
number of “holes” in the aggregate when d = 2 (3).

Connection to the super-cooled Stefan problem

In one space dimension d = 1 progress towards a mathemati-
cally rigorous understanding of DLA has been made. In (2), it
is shown that the path of the right endpoint of the aggregate
converges to the free boundary � in the single-phase super-
cooled Stefan problem (1SSP) for the heat equation up to an
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Algorithm 1: Classical DLA with optimization
Input: N , r, R

Initialize an N ◊ N matrix A of zeros. Denote the entry
at the center of this matrix A N

2 , N
2

.
For the seed particle, set A N

2 , N
2

= 1
while cluster radius < R do

Spawn a particle p uniformly at random on a circle
of radius r centered at (N/2, N/2).

while p is neither adjacent to a site in the cluster,
adjacent to a site on the boundary of �, nor at a
distance R from the seed do

Step p in a random direction:
up/down/left/right with equal probability

if Distance between p to seed > R then
Remove p and spawn a new one at radius r.

else if p is adjacent to a cluster site then
Set corresponding matrix entry to 1
if the distance from p to the seed is greater
than r then

r = r + 1
end

end
Print image of A, coloring all 1s black and all 0s white.

appropriate scaling of time. The classical 1SSP in one spatial
dimension models the freezing of a supercooled liquid on the
half-line strip [0, Œ). The initial temperature of the liquid is
lower than the temperature maintained at the liquid’s surface,
which lies below the freezing point of the liquid in question.
The main result of (1) defines this problem as follows

ˆtu = 1
2ˆxxu, –�t < x < Œ, t Ø 0, [1]

u(t, –�t) = 0, t Ø 0, [2]

ˆxu(t, –�t) = ≠2–�̇t, t Ø 0, [3]

u(0, x) = ≠–f(x), x Ø 0.[ [4]

where f Ø 0 and – > 0. We interpret t, x, and u = u(t, x) as
time, position, and temperature, respectively. The freezing
point is captured by u = 0, and the “freezing front” (i.e., the
interface between solid and liquid phases) at time t is located
at position x = –�t. We assume – > 0 is a given constant and
f is a known probability density function. Equation [4] implies
the liquid is below or at its freezing point, and hence why we
call this the supercooled Stefan problem. Equation [1] models
the heat di�usion in the fluid phase. Equation [2] states that
the phase change at the front is isothermal. Equation [3] is
the Stefan condition, which balances the heat flux through
the freezing front with the exothermic heat release as the
liquid freezes. This set of equations describes the one-phase
problem, meaning that it assumes the temperature in the solid
is constant and equal to u = 0. A solution to the SSP is the
pair (u, �) such that Equations [1]-[4] are satisfied.

In this supercooled setting, despite living only in one di-
mension, the Stefan problem for the heat equation gives rise to
singularities (in the sense that the velocity of the free bound-
ary explodes in finite time). This corresponds to the “rapid
freezing” of supercooled liquids observed experimentally. Still,

for an appropriate notion of solutions for 1SSP (i.e., the “prob-
abilistic solution”), global existence and uniqueness of such
solutions have been recently shown in (1). The probabilistic
reformulation of 1SSP corresponds to a 1-dimensional MDLA
process described above.

Motivated by this connection between MDLA and 1SSP
in one space dimension, we explore the possible connection
between a suitable version of MDLA and 1SSP for the heat
equation in two spatial dimensions. Our approach through-
out is numerical. We simulate the two-dimensional MDLA
process on integer grids with finer and finer mesh. We study
whether the resulting clusters satisfy certain properties that
(suitably defined probabilistic) solutions to 1SSP in two space
dimensions ought to satisfy.

An MDLA process suitable for 1SSP in two spatial
dimensions

We now consider an appropriate formulation of the MDLA
process with connections to 1SSP. With this model defined,
we will empirically confirm theoeretical predictions about the
properties of this model’s large population limit. To introduce
this MDLA process, we consider the assumptions made by the
classical DLA model that are inconsistent with the physics
underlying 1SSP:

1. The seed is a single infinitesimal particle.

2. The cluster growth process terminates once the cluster
attains some satisfactory size.

3. Particles are released, randomly walk, and are attached
one at a time.

4. Particles are “removed" when they drift too far from the
cluster.

To amend these assumptions and formulate an algorithm mod-
eling solutions to 1SSP in two space dimensions, we introduce
the new set up as follows.

Denote the set of points belonging to the cluster as �N
t on

the N ◊ N grid �N , and denote the seed �0. To store this
data, we use an N ◊ N matrix A to represent �N

. Any point
(x, y) œ �N corresponds to the entry at row y, column x in A.

Entries Ay,x corresponding to sites (x, y) which belong to the
cluster �N

t are filled with a value of 1, and all other entries a
value of 0.

In the classical setting, �0 is the singleton set consisting of
one seed particle of negligible volume. In the Stefan setting,
�0 has a strictly positive volume and therefore consists of
more than one particle. If �0 contains P particles, then we
say P = kN

2 for some k œ (0, 1). To see how the shape of �0
influences the terminal shape of �N

t , we study three di�erent
types of �0 seed clusters: circle, square, and cross. Note that
for a circular seed cluster, the radius r of a circular seed is
given by

r
2 = kN

2

fi
.

Instead of releasing particles and walking them one-by-one,
we now release M particles on �N

/�0 at time t = 0 all at
once. For each site (x, y) œ �N \ �0, we place a particle at
(x, y) with probability p. Each particle follows a symmetric
nearest-neighbor random walk as they do in classical DLA,
but here we enforce two additional properties on this random
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walk. Firstly, we require the particles to follow a random
walk with exclusion, by which we mean no two particles are
permitted to occupy the same site at the same time. If a
particle attempts to step into an occupied site, it stays put.
Secondly, we require particles to follow a random walk with
reflection at the boundary of �N : if a particle attempts to
step outside �N , it stays put. The cluster growth process
terminates at time t = T N

2 or when all of the M particles
released at t = 0 have attached to �N

t , whichever occurs first.
In the next section we numerically study the properties of

the terminal cluster �N
N2T as N æ Œ. To implement the model

for increasing N, we fix integers N0 > 0 and N
ú

> N0. We
run the model for each integer N œ [N0, N

ú]. This algorithm
is shown in Algorithm 2.

Algorithm 2: Modified DLA, circular seed cluster.
Input: N0, N

ú, T , p œ (0, 1), k œ (0, 1)
for N œ [N0, N

ú] do
Initialize an N ◊ N matrix A of zeros.
For all entries Ai,j of matrix A, if the Euclidean
distance between (j, i) and (N/2, N/2) is less than
kN

2
/fi, set Ai,j = 1.

Let B denote the set of all the sites (j, i) for which
Ai,j = 0 (this is the set �N \ �0.) For each
(j, i) œ B, with probability p set Ai,j = 2. Let P be
the set of all such sites. Denote M = |P |.

Set t = 0, m = 0.

while t < T N
2 and m < M do

for p = (x, y) œ P do
p takes a step to p

ú = (xú
, y

ú) according to
the nearest-neighbor symmetric reflected
random walk with exclusion. If this p

ú is
unoccupied, p steps to p

ú
.

if p
ú is adjacent to a site in �N

t then
Observe that it is possible for particles to
be in positions adjacent to p

ú at the
time of attachment. Denote P̃

ú the
collection of particles connected to p

ú.
Once p

ú is attached to �N
t , all the

particles in P̃
ú must also be attached

since they are instantaneously connected
to �N

t .
To attach all of the particles connected to
p

ú, we use the flood-fill algorithm to
identify which positions are connected
to p

ú and store them in P̃
ú.

for p̃ = (x̃, ỹ) œ P̃
ú fi {p

ú} do
Attach p̃ to �N

t by setting Aỹ,x̃ = 1
and Ay,x = 0.

end
m = m + 1

end
t = t + 1

end
end

Each of the terminal clusters showed in Figure 2 were produced
using Algorithm 2 for various seed shapes. These clusters were
formed for k = 0.01, T = 0.01, and p = 0.25. We see that
for each initial seed shape, the shape of the terminal clusters
�N

N2T is similar: fractal-like “branches" form on the seed. This

(a) Circular seed (b) Square seed (c) Cross-shaped seed

(d) Circular seed (e) Square seed (f) Cross-shaped seed

Fig. 2. Terminal clusters at N = 200 (top row) and N = 500 (bottom row).

type of cluster is what we would expect for the classical DLA
model with a positive-volume seed. Note as well that there
does not appear to be any obvious di�erence in the shape
of �N

N2T for di�erent shapes of �0. In particular, Figure 2f
implies that the qualitative structure of the terminal clusters
�N

N2T does not depend on the convexity of the seed �0.

�N
N2T as N æ Œ : random or deterministic limit?

In the previous section we saw an indication that the shape of
the terminal cluster �N

N2T is invariant with respect to the shape
of the seed �0 (see Figure 2). In this section, we test whether
the limit �T = limNæŒ �N

N2T is random or deterministic. The
result in (1) proves the existence of this limit in the weak sense,
but it is unclear whether this limit is random or deterministic.
Ongoing research predicts the limit is random. To test this
hypothesis numerically, we perform the following experiment.

Fix a number S of Monte Carlo simulations and fix two
reference points

xc, xs œ �N \ �0.

Reference point xc is positioned near the corner of �N at
coordinate (.95N, .95N), and reference point xs is positioned
towards the side of of �N at coordinate (.95N, .50N). Let
d(·, ·) be the L

1 distance function. Fix a step size z. We
run the cluster growth simulation S times and for each N =
N0, N0 + z, N0 + 2z, . . . we plot the histogram of the distances
from xs and xc to �N

N2T . Since the length of a cell’s edge on
�N is 1/N, the “physical" distance from x = xc, xs to �N

N2T

is calculated as

d(x, �N
N2T ) = 1

N
inf

pœ�N
N2T

d(x, p).

Similarly, for each N and for each sensor we also plot the
distance sample mean

µ̂d = 1
S

Sÿ

i=1

d(x, �N
N2T ),

and sample variance

‡̂
2
d = 1

S ≠ 1

Sÿ

i=1

!
d(x, �N

N2T ) ≠ µ̂d

"2
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as functions of N.

If ‡̂
2
d appears to converge to 0 for both sensors, or equiva-

lently if the histograms appear to converge to a Dirac mass,
then we can conclude that the limit of �N

N2T is deterministic.
Otherwise the limit is random.

Experiment results for a circular seed cluster. Our experiment
uses S = 10 simulations and N ranges from N0 = 100 through
N

ú = 500 with a step size of z = 10. We set k = 0.01, T = 0.01,

and p = 0.25. Figure 3 shows the results of the experiment for
the sensor xs and Figure 4 shows the results for sensor xc.

For both sensors, the histograms of the distance samples
do not suggest convergence to a Dirac mass. Whereas the
variance plot for sensor xs appears to converge to 0 as N

increases, the variance plot for sensor xc does not appear to
converge to zero. Therefore the results of this experiment
indicate that the limit of �N

N2T as N æ Œ is random.

(a) N = 100 histogram (b) N = 200 histogram (c) N = 350 histogram

(d) N = 500 histogram (e) Sample means (f) Sample variances

Fig. 3. Side sensor xs: distance histograms, sample mean and variance plots.

(a) N = 100 histogram (b) N = 200 histogram (c) N = 350 histogram

(d) N = 500 histogram (e) Sample means (f) Sample variances

Fig. 4. Corner sensor xc: distance histograms, sample mean and variance plots.

The di�erence of the results for each sensor deserves atten-
tion. The sample mean plots show that the distance from xs

to the cluster goes to zero much quicker than it does for xc.

This is evidenced in Figure 2. In the bottom row, the images
indicate that the cluster spreads to the side of the grid before
it spreads into the corner. There is a sense in which it is “more
di�cult" for the cluster to grow into the corner of the grid
than it is for the cluster to grow to the side.

Properties of �T = limNæŒ �N
N2T

If �T = limNæŒ �N
N2T is a classical solution to the super-

cooled Stefan problem in two dimensions, there are certain
properties we expect �T to have. These properties are outlined
below:

a.) Since particles aggregate to the cluster randomly, situ-
ations may occur when a small “hole" is created in the
cluster and is never filled with a particle. For �T to solve
the super-cooled Stefan problem in dimension two in the
classical sense, the total limiting volume of these holes
should be negligible. In dimension one, such holes are im-
possible. However, new results indicate that in dimension
two, the total limiting volume of these holes may not be
negligible.

b.) The length of the boundary of �N
N2T does not explode as

N æ Œ. Likewise, the volume of the cells comprising this
boundary does not explode.
In the consideration of this boundary, we introduce two
di�erent notions of the boundary. Denote with ˆ�N

N2T

the usual topological boundary. We also consider ˆ�N
N2T ,

the “external" boundary of �N
N2T . The external boundary

is defined as

ˆ�N
N2T = ˆ�N

N2T \ ˆH
N
N2T ,

where H
N
N2T is the set of holes in the cluster �N

N2T . For
example, the external boundary is the boundary of the
cluster in Figure 4 excluding the ten edges lining the
holes.

c.) Since the boundary of the grid �N and the seed �0 are
symmetric, we expect the limiting cluster �T to also be
symmetric.

In this section we numerically test each of these properties to
determine whether �T forms a solution to the super-cooled
Stefan problem.

We can test (a) and (b) together with the same procedure,
stemming from a simple observation. The following figure
represents the matrix A from Algorithm 2 where the 1s indicate
particles belonging to �N

N2T , and blank spaces are 0s.

Fig. 5. Example of a cluster with holes of different size.

Note that ˆ�N
N2T is comprised of the edges on the exterior of

the cluster and the edges lining the interior holes. To compute
the length of this boundary, we must count the number of
these edges. Let E

N denote the value of this count. Let Eij be
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the of edges of the cell associated to entry Aij which contribute
to ˆ�N

N2T . We can compute Eij using

Eij = 4 ≠
ÿ

(adjacent entries),

where the adjacent entries are the entries representing cells
above, below, to the right, and to the left. For example,
consider the bottom-right-most cluster cell. This cell has
neighbors of value 1 above and to the left, and neighbors of
value 0 below and to the right. Thus it contributes Eij = 2
edges to ˆ�N

N2T , verified by the picture. It is clear that

|ˆ�N
N2T | = E

N =
ÿ

i,j

Eij .

Note that |ˆ�N
N2T | Æ |ˆ�N

N2T |, where equality holds when
there are no holes in �N

N2T and the inequality is strict when
there are holes. To count the edges that contribute only to
ˆ�N

N2T , we need to modify the procedure above.
We begin by “filling" all the holes with a well-chosen value.

Everywhere in matrix A where entries correspond to holes
in �N

N2T , we fill these entries with ≠1. Then for each entry
Aij , we compute Eij similarly as above, but here we take the
absolute value of each adjacent entry:

Eij = 4 ≠
ÿ

|adjacent entries|

so that
|ˆ�N

N2T | = E
N =

ÿ

i,j

Eij .

The normalized values L
N
ˆ� = E

N
/N and L

N
ˆ� = E

N
/N give

the lengths of the boundary and external boundary, respec-
tively.

To fill the holes, we utilize the so-called “flood-fill" algo-
rithm. The flood-fill algorithm is used to determine the area
connected to a given node in a multi-dimensional array. An
example of its application is the “bucket" fill tool in digital
painting programs used to fill connected areas of a similar
coloring with a di�erent color. In our setting, the flood fill
algorithm fills connected areas in matrix A which have simi-
lar values. We choose entry A0,0 = 0 as the initial input to
the flood-fill algorithm. The algorithm changes this value to
A0,0 = ≠1. It then checks the values of neighboring entries
A1,0 and A0,1. If these entries are equal to 0, it changes them
to ≠1. The process repeats for each A1,0 and A0,1 and so
on until the entire area of entries connected to A0,0 initially
having value 0, now have value ≠1.

To illustrate the application of flood-fill, observe that one
application of flood-fill to Figure 4 changes all cells with value
0 exterior to the cluster to ≠1. Then, we set all remaining
entries of A with value 0 to ≠1. These entries of value 0 that
were not changed by flood-fill are the holes themselves, as they
are not connected to A0,0. Now that all the holes have value
≠1, what remains is to change the values of ≠1 exterior to the
cluster back to 0. To do this, we apply flood-fill again to entry
A0,0 = ≠1, this time specifying that the algorithm change all
values of ≠1 to 0. The result is a matrix A

ú whose entries
representing holes in the cluster �N

N2T have been filled with
≠1.

We also want to compute the volume of cells on ˆ�N
N2T . To

do this, we need a count of how many cells live on the boundary
ˆ�N

N2T , and then we make an appropriate normalization for

the physical volume. For each entry Aij in matrix A, we check
the following conditions. If at least one of them holds then
entry Aij lives on the boundary of �N

N2T :

1. Ai+1,j = 1 and Ai≠1,j = 0,

2. Ai≠1,j = 1 and Ai+1,j = 0,

3. Ai,j+1 = 1 and Ai,j≠1 = 0,

4. Ai,j≠1 = 1 and Ai,j+1 = 0.

The first condition says that the position below Aij is a cluster
particle and the position above Aij is an empty cell, the second
condition is the converse, and the third and fourth conditions
are analogous but for positions left and right of Aij . It is
is clear that if any one of these hold, Aij must be on the
boundary of �N

N2T . To compute the physical volume of these
boundary cells, if B

N denotes the number of cells on the
boundary ˆ�N

N2T then the volume of the boundary is

V
N

ˆ� = 1
N2 B

N
.

In the course of filling holes, we may also keep count of how
many holes are filled. In this way, we determine the number of
holes H

N in �N
N2T . To compute the physical volume of these

holes, we take
V

N
holes = 1

N2 H
N

.

To test for the symmetry of �T , for each N we take the 90
degree counterclockwise rotation of �N

N2T , then compute the
volume of the particles in the symmetric di�erence between
�N

N2T and its rotated counterpart. If this volume converges to
0 as a function of N, we conclude that �T is symmetric. More
explicitly, denote rot(�N

N2T ) the +90 degree rotation of �N
N2T .

For each N, count the number of particles in the symmetric
di�erence

D
N = |�N

N2T — rot(�N
N2T )|,

so that the volume of the particles in this symmetric di�erence
is given by

V
N

di� = 1
N2 D

N
.

Testing (a), (b), and (c) amounts to plotting L
N
ˆ�, L

N
ˆ�, V

N
ˆ�,

V
N

holes, and V
N

di� as functions of N . The results of these tests
with the same parameters as the experiment in Section 3.1
are shown in Figure 6. Figure 6-(a) and (b) demonstrate that
the length of the boundary of �T explodes as a function of N.

Figure 6-(d) indicates that the holes constitute a non-negligible
volume in the limiting cluster �T . The spiking of the graphs in
(b) and (d) is due to how particles are attached in Algorithm
2. When a particle enters a position adjacent to the cluster,
if there are particles connected to this adjacent site, then all
the particles attach instantly. This result in large “pockets"
of holes forming in the cluster, producing sharp up-spikes in
hole volume and a corresponding down-spikes in the external
boundary length. Nevertheless, it is clear that the experiment
confirms theoretical conclusions that the holes in the two
dimensional cluster growth process constitute a non-negligible
volume. Likewise, Figure 5-(e) suggests the volume of particles
in �N

N2T — rot(�N
N2T ) is strictly positive as N æ Œ. This

means that the symmetry of the seed cluster �0 is not preserved
in the cluster growth process as N increases. In particular,
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these results imply that the MDLA model considered here does
not converge to solutions of 1SSP in two space dimensions.

Note that Figure 6 also includes a plot of first exit times.
These are the times t œ [0, T N

2] for which the cluster first
contacts the boundary of �N

. The decreasing trend of these
exit times suggests that the cluster fills �N instantaneously in
the limit as N æ Œ.

(a) Boundary length (b) External boundary length

(c) Boundary volume (d) Hole volume

(e) Volume of particles in

�N
N2T

— rot(�N
N2T

)
(f) First exit times

Fig. 6. Test results for properties (a), (b), and (c).

Conclusion

Our statistical analysis of 2-dimensional MDLA terminal ag-
gregates shows that the MDLA process defined herein does
not converge to probabilistic solutions of 1SSP in two space
dimensions. In particular, the presence of a non-negligible
hole volume in terminal aggregates grown on grids with a fine
mesh and that these terminal aggregates do not appear to
converge to deterministic structures disqualify limNæŒ �N

N2T

as a probabilistic solution to 1SSP in two space dimensions.
An unexpected consequence of this work is an observation ob-
tained from Figure 6(f). This plot indicates that the terminal
cluster first exit times go to 0 as N æ Œ. In other words, we
conjecture that terminal clusters spread to the boundary of
�N instantaneously in the limit as N æ Œ.

Although MDLA clusters do not appear to converge to
solutions of 1SSP in two space dimensions, it is possible that
modifications may be made to the MDLA process studied here
such that the terminal clusters do not have the numerous un-
desirable properties identified in our simulations. In particular,
if it is possible to introduce a feature to the MDLA process
that results in a more regular and less fractal-like terminal
cluster boundary, and if it is possible to limit the possibility of

interior hole formation, such a process may produce limiting
clusters that do indeed converge to solutions.
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