
A Gröbner Basis Database
Jelena Mojsilović1

1Department of Applied Mathematics, Illinois Institute of Technology

In response to the increased interest in machine learning to solve
mathematical problems combined with the complexity inherent in
computing Gröbner bases, we create a Gröbner basis database.
Through this database we aim to provide a platform where re-
searchers and practitioners can: obtain accurate and verified data on
Gröbner bases, submit interesting and important examples of Gröb-
ner bases, and obtain curated datasets for benchmarking, learning,
and other common problems in the research community. Given the
nascent stage of the database, new features are likely to be added
on as it grows.

Gröbner bases are an approach to answering the ideal
membership problem arising from computational algebraic

geometry. Before we explain what this is, let us first define an
ideal. An ideal, I, is a subset I ⊂ k[x1, ..., xn] that satisfies:

1. 0 ∈ I

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ k[x1, ..., xn], then hf ∈ I.

Thus, an ideal I is an infinite collection of polynomials and
the ideal membership problem is to determine whether a
polynomial f lies in an ideal I. An analogous problem in
linear algebra would be determining if a vector, v, lies in a
subspace V . The solution to the linear algebra problem is also
analogous to the solution of the ideal membership problem.
The standard method in linear algebra is to find a basis for V
and attempt to find if HV x = v has a solution x, where HV is
the matrix whose columns consist of the basis. The approach
in computational algebraic geometry begins with finding a
finite basis for the ideal. The Hilbert Basis Theorem tells us
that every ideal I ⊂ k[x1, ..., xn] has a finite basis. We denote
this as I = 〈f1, ..., fs〉, . That is, every polynomial g ∈ I can
be expressed as: g = h1f1 + h2f2 + ... + hsfs for some set
{h1, ..., hs} ⊂ k[x1, ..., xn].

A problem arises from this definition: If we are given a
polynomial, f , how do we determine whether f ∈ I? This is
synonymous with the ideal membership problem.

The Division Algorithm

The division algorithm provides a partial solution to the ideal
membership problem, regardless of the basis.

Fix a monomial order >. Let F = (f1, ..., fn) be an
ordered s-tuple of polynomials in k[x1, ..., xn]. Then every
f ∈ k[x1, ..., xn] can be expressed as f = a1f1 + ...+ asfs + r
where ai, r ∈ k[x1, ..., xn].

Combining the division algorithm with the ideal mem-
bership problem, we see that a polynomial f ∈ I if r = 0.
However, the division algorithm does not specify in which
order the divisors must be utilized. This allows the remainder

Fig. 1. The division algorithm dividing xy3 + y + 1 by the set {x + y, xy2 + 1},
utilizing two orderings on the divisors (xy2 + 1, x + y) and (x + y, xy2 + 1), yields
two different remainders.

upon division to differ depending on the ordering of divi-
sors. The example in Figure 1 is a demonstration of this,
determining whether f = xy3 + y + 1 ∈ 〈xy2 + 1, x+ y〉.

This property is problematic because the ordering of divi-
sors does not provide a unique remainder. We want a basis
that retains the property that the ordering of divisors does not
change the remainder. We must ask: is there a better basis
for I such that the remainder, r, is uniquely determined? A
Gröbner basis is such a basis.

Gröbner Bases

A Gröbner basis is a generating set of an ideal in a polynomial
ring, k[x1, ..., xn], over a field, k. More formally letting LT
denote the leading term of a polynomial, this basis is defined
as follows.

Definition 1 Under a specific term order, a finite subset
G = {g1, ..., gt} of an ideal I is said to be a Gröbner basis
if 〈LT (g1), .., LT (gt)〉 = 〈LT (I)〉.

A consequence of this definition is that every non-zero ideal
has a Gröbner basis. The following two properties of a Gröbner
basis allow for it to be the generating set for I that we are
looking for.

Theorem 1 Let G = {g1, ..., gt} be a Gröbner basis for an
ideal I ⊂ k[x1, ..., xn] and let f ∈ k[x1, ..., xn]. Then there is
a unique remainder, r ∈ k[x1, ..., xn] with the following two
properties.

1. No term of r is divisible by any of LT (g1), ..., LT (gt).

2. There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no
matter how the elements of G are listed when using the division
algorithm.

For this reason, Gröbner bases solve the problem of finding a
solution to a multivariate, non-linear system of polynomials.

1

65 

Sana Basheer




Computation and Application of Gröbner Bases . Gröbner
bases are a cornerstone of computation with polynomials and
have a wide variety of applications such as robotics, engineer-
ing, statistics, and biology. Gröbner bases provide a solution
to an EXSPACE hard ideal membership problem, which can
be reduced to the word equivalence problem [2].

A Gröbner Basis Database. Given the complexity of Gröbner
bases combined with an increase in interest using machine
learning to solve mathematical problems, a Gröbner basis
database would provide the research community with a robust
set of Gröbner basis data. The goal of the database is two-fold:
to generate a set for potential future learning, and to provide
a way for researchers to cross reference to see if their physical
problem is equivalent to some other known problem.

Methods

To create the database, we use MySQL in order to form a
table of rows and columns. Each column is one of seventeen
fields: starting generating set, reduced Gröbner basis, field,
term order, number of variables, size of the reduced GB,
max total degree, min total degree, max multi-degree, min
multi-degree, minimum number of generators, code, name,
description, submission by, verified by, and submission date.
These fields are chosen because they are well-defined properties
of Gröbner bases.

The database is connected to a website, Groebner Ba-
sis Database, where users can find a search function to
query the database, pre-made datasets for machine learn-
ing, benchmarking problems, and programming, as well as
a submissions page in order to submit their own Gröbner
basis data. In addition to inputting our own Gröbner ba-
sis data, we encourage others to submit data so that we
can have a robust dataset. Our database can be found at:
http://math.iit.edu/~groebnerdatabase/index.html.

Fields of the Database. All of the mathematical definitions
below are taken from [1] before the list begins.

• Starting Generating Set: We organize our database by the
starting generating set because it defines the polynomial
system from which we will construct a (reduced) Gröbner
basis.

• Reduced Gröbner Basis: A reduced Gröbner basis for
a polynomial ideal I is a Gröbner basis G for I such that:

– LC(p)= 1 for all p ∈ G, where LC(p) denotes the
leading constant of the polynomial p.

– For all p ∈ G, no monomial of p lies in 〈LT (G−{p}〉.

We choose to include the reduced Gröbner basis because
it is unique given a monomial ordering. Thus for any two
ideals, in order to verify if they have the same basis given
a monomial order, in fact, to determine whether they are
the same ideal, a reduced Gröbner basis must be found.

• Field: The field of coefficients overwhich a Gröbner basis
is calculated must be specified by definition.

• Term Order: A term order on k = [x1, ..., xn] is any
relation on Zn≥0, or equivalently, any relation on the set
of monomials xα satisfying:

– > is a total (linear) ordering on Zn≥0;
– if α > β and γ ∈ Zn≥0, then α+ γ > β + γ;
– > is a well-ordering on Zn≥0. In other words, every

nonempty subset of Zn≥0 has a smallest element under
>.

A term order is necessary in order to compute a Gröbner
basis by definition, thus it must be included as a field in
our database. For every term order, we standardize the
variables. For example, for a system given in (x, y, z) we
convert the system to x1, x2, x3. This is done in order to
prevent double entries in the database of the type that
have the same initial generating set and same reduced
Gröbner basis.

• Size of the Reduced Gröbner Basis: The size of the re-
duced Gröbner basis does change depending on term
order. This information could distinguish the same ideal
double-entered into the database whose Gröbner bases
are calculated under different term orders.

• Maximum Total Degree: For a given monomial order,
the maximum of the degrees of the polynomials in the
Gröbner basis, where the degree of a polynomial p whose
leading term is LT (p) = cαx

α1
1 . . . xαn

n is defined to be
deg(p) = α1 + · · ·+ αn, is maxdeg(g1), ..., deg(gt).

• Minimum Total Degree: For a given monomial order,
the minimum of the degrees of the polynomials in the
Gröbner basis, where the degree of a polynomial p whose
leading term is LT (p) = cαx

α1
1 . . . xαn

n is defined to be
deg(p) = α1 + · · ·+ αn, is mindeg(g1), ..., deg(gt).

• Maximum Multidegree: For a given monomial or-
der, the maximum of the multidegrees of the poly-
nomials in the Gröbner basis, where the multi-
degree of a polynomial p whose leading term is
LT (p) = cαx

α1
1 . . . xαn

n is defined to be the vector
deg(p) = (α1, . . . , αn), is the vector MaxMdeg =
(max{α11, . . . , α1t}, . . . ,max{αn1, . . . , αnt})

• Minimum Multidegree: For a given monomial or-
der, the minimum of the multidegrees of the poly-
nomials in the Gröbner basis, where the multi-
degree of a polynomial p whose leading term is
LT (p) = cαx

α1
1 . . . xαn

n is defined to be the vector
deg(p) = (α1, . . . , αn), is the vector MinMdeg =
(min{α11, . . . , α1t}, . . . ,min{αn1, . . . , αnt})

• Minimum Number of Generators: We include the mini-
mum number of generators because it specifies the size of
the input system of polynomials.

• Code: For the time being this is not an active field.
However, this field will become a source for users to find
code for widely used programs, such as Macaulay2 or
Sage, in order to perform calculations for a given entry
in the database.

• Name: Name is an optional field which is included in order
to provide the names of ideals which are more commonly
known by some name.

• Verified By: The verified by field will allow the user to
know that the data of an entry in the database has been
checked for correctness.

2

66 

http://math.iit.edu/~groebnerdatabase/index.html
Sana Basheer




Current Method. The small examples we have included for the
start of the database were calculated in Macaulay2. Macaulay2
is open-source software devoted to supporting research in
computational algebraic geometry and commutative algebra.
Given the complexity of the problem, the future method of
computation may differ.

Discussion

This database is a long-term project that will require editing
and maintenance over time. We hope this database will serve
as a useful tool for the research community. As such, we
encourage input from those who will use it in an effort to
improve this database.

A major challenge in creating this database was determin-
ing what properties of Gröbner bases would be useful to the
research community and if these properties should be included.
Thus, we have to determine what the ideal database would
be and what can be made realistically. We acknowledge that
our database will not contain all properties of a Gröbner basis
that may be used for research, but our database will contain
those properties of a Gröbner basis that will be most often
sought after by the research community.

Conclusion

We have set the foundation of our database with a basic outline
of what we want the database to contain. This database should
be viewed as a major work in progress that will change over
time. For our purposes, we hope to use the dataset we generate
through this database in future work in machine learning on
Gröbner bases.

Future Work. In the future we plan to work on handling user-
generated datasets, creating an automated method of trans-
ferring uploads to the database, and user submission of data
that is too complex for the automated database entry pro-
cess. User generated datasets may contain missing information
and most likely will require some calculations in order to fill
null entries. The current method of adding entries into the
database requires physical entry from a submission. This is
inefficient and time costly. In the future, it would be more
efficient to create an automated process so as to allow more
time for handling more complex entries. Complex entries may
take a large amount of time to handle, so these entries must
be filtered out of the automation process. However, this does
not solve the issue of how the data for these entries will be
verified and/or calculated.

ACKNOWLEDGMENTS. This database is a joint work with
Travis Koehring, Sonja Petrović, Despina Stasi, and Sara Jamshidi
Zelenberg. We would like to thank the Applied Mathematics De-
partment at the Illinois Institute of Technology for hosting our
database. We would also like to thank Upendra Ghandi for his help
and support in the creation of our database and website this past
summer.

References

[1] David A. Cox , John Little , Donal O’Shea, Ideals, Varieties,
and Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra, Springer Publishing
Company, Incorporated, 2015

[2] Earnst W. Mayer, Some Complexity Results for Polyno-
mial Ideals, Journal of Complexity 13, 303-325, 1997

3
67 

Sana Basheer



